On inequalities for normalized Schur functions
نویسندگان
چکیده
منابع مشابه
On inequalities for normalized Schur functions
We prove a conjecture of Cuttler et al. (2011) on the monotonicity of normalized Schur functions under the usual (dominance) partialorder on partitions. We believe that our proof technique may be helpful in obtaining similar inequalities for other symmetric functions. © 2015 Elsevier Ltd. All rights reserved. We prove a conjecture of Cuttler et al. [1] on themonotonicity of normalized Schur fun...
متن کاملSchur-convex Functions and Isoperimetric Inequalities
In this paper, we establish some analytic inequalities for Schurconvex functions that are made of solutions of a second order nonlinear differential equation. We apply these analytic inequalities to obtain some geometric inequalities.
متن کاملSufficient Inequalities for Univalent Functions
In this work, applying Lemma due to Nunokawa et. al. cite{NCKS}, we obtain some sufficient inequalities for some certain subclasses of univalent functions.
متن کاملNew integral inequalities for $s$-preinvex functions
In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.
متن کاملOn Fejér Type Inequalities for (η1,η2)-Convex Functions
In this paper we find a characterization type result for (η1,η2)-convex functions. The Fejér integral inequality related to (η1,η2)-convex functions is obtained as a generalization of Fejér inequality related to the preinvex and η-convex functions. Also some Fejér trapezoid and midpoint type inequalities are given in the case that the absolute value of the derivative of considered function is (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2016
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2015.07.005